28 research outputs found

    Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains

    Full text link
    We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In particular, we develop techniques for the treatment of the dense stiffness matrix including the computation of the entries, the efficient assembly and storage of a sparse approximation and the efficient solution of the resulting equations. The main idea consists of generalising proven techniques for the treatment of boundary integral equations to general fractional orders. Importantly, the approximation does not make any strong assumptions on the shape of the underlying domain and does not rely on any special structure of the matrix that could be exploited by fast transforms. We demonstrate the flexibility and performance of this approach in a couple of two-dimensional numerical examples

    Transition Densities and Traces for Invariant Feller Processes on Compact Symmetric Spaces

    Get PDF
    We find necessary and sufficient conditions for a finite K–bi–invariant measure on a compact Gelfand pair (G, K) to have a square–integrable density. For convolution semigroups, this is equivalent to having a continuous density in positive time. When (G, K) is a compact Riemannian symmetric pair, we study the induced transition density for G–invariant Feller processes on the symmetric space X = G/K. These are obtained as projections of K–bi–invariant L´evy processes on G, whose laws form a convolution semigroup. We obtain a Fourier series expansion for the density, in terms of spherical functions, where the spectrum is described by Gangolli’s L´evy–Khintchine formula. The density of returns to any given point on X is given by the trace of the transition semigroup, and for subordinated Brownian motion, we can calculate the short time asymptotics of this quantity using recent work of Ba˜nuelos and Baudoin. In the case of the sphere, there is an interesting connection with the Funk–Hecke theorem

    Markov Processes

    No full text

    Energy, and Intersections of Markov Chains

    No full text
    corecore